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Figure 1: A selection of image galleries generated from the BigGANmodel [6] using our interactive GAN exploration interface
(top row) and automatically sampled from the GAN model using our sampling method (bottom row).

ABSTRACT
Generative Adversarial Networks (GANs) can automatically gen-
erate quality images from learned model parameters. However, it
remains challenging to explore and objectively assess the quality
of all possible images generated using a GAN. Currently, model
creators evaluate their GANs via tedious visual examination of gen-
erated images sampled from narrow prior probability distributions
on model parameters. Here, we introduce an interactive method
to explore and sample quality images from GANs. Our first two
user studies showed that participants can use the tool to explore
a GAN and select quality images. Our third user study showed
that images sampled from a posterior probability distribution using
a Markov Chain Monte Carlo (MCMC) method on parameters of
images collected in our first study resulted in on average higher
quality and more diverse images than existing baselines. Our work
enables principled qualitative GAN exploration and evaluation.
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1 INTRODUCTION
Generative Adversarial Networks (GANs) [14] have shown promise
as creativity support tools to automatically generate never before
seen images from learned model parameters. In addition to generat-
ing images, GANs have been used anywhere from supporting image
transformation (e.g., image translation [17, 19], image blending [33]
and synthesis [3, 8, 25]) to art tools [15, 20, 29]. As such, they can
potentially make people "more creative more often" [31].

However, it remains challenging to explore and objectively assess
the ability of a GANmodel to generate diverse, high-quality images,
where definition of quality varies based on the intended use of the
GAN model (e.g., to generate a diverse set of photo-realistic images

https://doi.org/10.1145/3411764.3445714
https://doi.org/10.1145/3411764.3445714
https://doi.org/10.1145/3411764.3445714


CHI ’21, May 8–13, 2021, Yokohama, Japan Zhang and Banovic

[34]). Unlike other generative models that optimize a likelihood
function, GANs lack such an objective function, which makes it
difficult to quantitatively compare performance of different models
[27]. Although there are several quantitative measures to evaluate
GANs (e.g., the inception score [27]), it remains unclear which
measure best captures capabilities and limitations of a GAN [4].
Furthermore, it is not clear that such quantitative measures capture
how humans perceive and judge the quality of generated images.

Thus, visual examination of images by humans remains one of
the most common ways to evaluate GANs [4]. Yet, such evaluation
[6, 26] involves tedious visual examination of GAN generated im-
ages organized into non-interactive image galleries sampled from
narrow prior probability distributions on model parameters. Tech-
niques for interactive GAN image generation [3, 10, 13, 18, 30, 35]
enable manual creation of specific images, but not sampling of di-
verse, high-quality images from a GAN. Although recent interactive
generative model parameter optimization methods [21, 22] could
be used to explore a GAN, they focus on finding a single "best"
quality GAN-generated image [22] or a gallery of similar high-
quality images [21], and not a diverse gallery of images required
for qualitative GAN exploration and evaluation.

In this paper, we introduce an interactive method for exploring
and sampling quality images from GANs to automatically generate
galleries of diverse, high-quality images (Figure 1). We first present
an interactive tool for exploring GANs and selecting quality images,
including their correspondingmodel parameters (Figure 2). We then
show how to use images and model parameters selected using our
tool to sample other diverse, high-quality images from a posterior
probability distribution of model parameters using a Markov Chain
Monte Carlo (MCMC) method [9].

We illustrate our method on the BigGAN model [6], which tests
the boundaries of scalability and capabilities of GANs to generate
diverse set of photo-realistic images from 1,000 different categories
(e.g., Irish Setter, butterfly, dome). We chose BigGAN [6] because
it is an exceptionally large model that produces both good and
poor quality images. We then evaluated our method in a series
of crowdsourced user studies to compare with a current state-of-
the-art baseline evaluation method [6], which used non-interactive
galleries of randomly sampled images to visually examine a GAN.

We first conducted an AmazonMechanical Turk (MTurk) [1] user
study with 367 participants in which we showed how they used our
tool to explore the model and select 10,026 photo-realistic images
from ten different BigGAN categories. To validate the output of
our first study, we conducted another MTurk user study with 1,622
participants in which they rated 79.94% of images that participants
generated using our tool in our first study as photo-realistic. We
then conducted our third MTurk user study with 1,000 participants
and showed that our method generated more diverse photo-realistic
image galleries than the baseline method [6].

Our work enables principled qualitative GAN exploration via
interactive visual examination, even in regions of the model where
one would not expect them to be. Our automated method enables
quick generation of diverse, high-quality image galleries to support
qualitative evaluation of GANs. Our tools allow users to discover ca-
pabilities and limitations of a GAN model through carefully crafted
set of interactions with the model. Knowledge we generated in this
work will inform future interactive model exploration.

2 GAN EXPLORATION CHALLENGES
Here, we briefly introduce Generative Adversarial Networks (GANs)
[14] and explain their underlying architecture before diving deeper
into existing methods for exploring and evaluating them. A GAN is
a type of generativemodel, most commonly used to generate images.
However, GAN training is unlike training of other discriminative
and some generative models that optimize a likelihood function
because GANs training does not involve an objective function.

Instead, training a GAN involves two networks: 1) a Generator
that takes in a vector of latent variables z = (𝑧1, ..., 𝑧𝑛) ∈ R𝑛 and
outputs the corresponding image, and 2) a Discriminator that is
used to distinguish between generated images and real images
(provided as training data). The Generator is trained to maximize
the probability of fooling the Discriminator, while the Discriminator
is trained to discriminate training data from the images created by
the Generator. Once trained, the Generator can take any vector of
latent variables z to generate a new image. Our focus is primarily
on the Generator and its ability to generate quality images.

This unique property of GANs, where they lack a function to
optimize, makes quantitative evaluation of GANs exceptionally
difficult [4]. Even current state-of-the-art quantitative methods de-
pend on validation from humans to ensure they capture the human
notion of quality [27]. Thus, visual examination and qualitative
evaluation still remain an important aspect of GAN evaluation.

However, existing, commonly used qualitative methods use te-
dious visual examination of image galleries sampled from narrow
probability distribution of the image parameters. This can lead to
two major challenges: 1) if z deviates from the mean too greatly, the
generated image will tend to have poor quality, and 2) if all elements
of z are too close to the mean, then the resulting images will all
look similar and the sample will not be diverse. To account for this,
the existing sampling methods [6, 26] sample z from a truncated
normal distribution, with an arbitrarily selected threshold that is
the same for all 𝑧𝑖 in z. Unfortunately, there is no guarantees that
such arbitrary thresholds will not discard some high-quality images
from the sample or include poor-quality images in it.

Recent research [3, 10, 13, 18, 30, 35] has proposed a number of
techniques for interactive GAN image generation, which all could
aid in GAN exploration. Such algorithmic approaches [13, 18] often
search specific parts of latent space of a GAN using limited number
of interactions with the GAN (e.g., randomly regenerating non-
interactive image galleries) to guess how model parameters map
to model outputs. Although approaches for direct manipulation of
model parameters [30] exist, such interactions currently require te-
dious manipulation of sliders that map directly to model parameters.
Unfortunately, optimization methods [21, 22] that could reduce the
time it takes to search model parameters by direct manipulation
are not meant for generating galleries of diverse images required
for qualitative GAN exploration and evaluation.

Direct manipulation of model outputs could increases the ex-
pressiveness of interactions with a GAN, but the existing tech-
niques [3, 10, 35] focus on manually generating specific images
from a GAN and not a large sample of images that could provide
insights into the capabilities and limitations of current GANmodels.
Thus, it remains unclear what interactions could support interactive
GAN exploration and validation.
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Figure 2: Themain components of our final interactive interface for GAN exploration: a) tool palette, b) current working image
gallery, c) gallery snapshots, and d) user-selected quality images.

3 INTERACTIVE GAN EXPLORATION
Here, we describe our two-step method for exploring GANs that can
aid in qualitative evaluation of a GAN model. In the first step, our
method enables exploration of a GAN model through interactive
visual examination of a subset of images from a large space of
possible images (of both high and poor quality) that the GANmodel
can generate. In the second step, we show how to use those user-
selected quality images from our first step to automatically sample
more quality images from the GAN.

3.1 Interactive GAN Exploration Interface
Here we present the design and implementation of an interactive
interface (Figure 2) for exploring and selecting high-quality images
from GANs. The main design goal of our interface was to enable
users to explore the massive space of possible images generated
using a GAN in a principled way to find and select quality images.

3.1.1 Iterative Interface Design and Formative Usability User Study.
To design and implement our interface, we used an iterative user-
centered design approach. We first studied the current context of
use and existing GAN exploration and validation methods through
existing literature (in particular comprehensive review in [4] and
discussion of user needs in [27]), and identified a central user need:
the ability to interactively explore a GAN.

We designed an initial interface (Figure 3) for interactive GAN
exploration inspired by the design gallery paradigm [23] and se-
quential image gallery exploration [21]. In our initial design, the
user explores a GAN by sequentially selecting images from a cur-
rent working image gallery (Figure 3.A) using the sequential plane
search optimization method [21] to find a photo-realistic image
(Figure 3.B). We picked the 5 × 5 grid layout of the current work-
ing image gallery without lack of generality and based on recom-
mendations from [21]. The user could submit the current selected
photo-realistic image, undo the last image selection (i.e., return to
the previous working image gallery), randomize current working
gallery (i.e., start over), or change image category (Figure 3.C).

We then piloted a functional prototype (implemented as a Python
Django Web application) of our initial design with 26 participants
recruited through mailing lists and word of mouth at our academic
institution. We used the BigGAN model [6] in our initial prototype
implementation, which can generate photo-realistic images from
1,000 different categories. For more details about our choice of the
BigGAN model [6] as a test-bed and our user study infrastructure,
see Section 4.1. We asked participants to select only photo-realistic
images, and followed-up with a subset of them via a semi-structured
interview in an online chat to collect qualitative data on usability
of our initial interface.
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Figure 3: Our initial interactive interface for GAN explo-
ration: a) current working image gallery, b) current user-
selected image, and c) study navigation tools.

Participants in our formative usability study submitted 528 photo-
realistic images (or on average approximately 20 images per par-
ticipant). They did this by performing sequential image gallery
selection 750 times, performed undo 28 times, and randomized their
current working image gallery 286 times. Our qualitative analysis of
participant responses uncovered two main usability issues: 1) lack
of clear mapping between sequential image gallery search method
[21] and exploration of a GAN, and 2) lack of user control and free-
dom. Participants reported that they could not tell what selecting
an image from the current working gallery would actually do, and
suggested that a conceptual mapping to zoom feature could help.
Although participants could undo their last action and even start
over by randomizing their current gallery, participants complained
that they often lost track of where they were and had no choice but
to start over, which caused them annoyance.

We then used insights from our formative usability study and
usability principles to carefully iterate on our final interface and
interactions design. Figure 2 shows our final interface design and
its four main components: a) tool palette, b) current working image
gallery, c) gallery snapshots, and d) user-selected quality images.We
improved on the sequential image gallery search by mapping it to
the zoom in and out paradigm and expanding the set of interactions
to include zoom in, zoom out, zoom into region, and pan tools. We
improved the user freedom and control via landmarks, to allow
users to backtrack, in form of gallery snapshots and better visibility
of selected images. We describe each in detail below.

3.1.2 Current Working Gallery and Selecting Quality Images. Our
final interface displays a working image gallery with 25 GAN-
generated images organized in a 5 × 5 grid (Figure 2.B), at all times.
This is the current working gallery that the user can select high-
quality images from. To select an image, the user clicks on the
checkbox in the upper left corner of the image. The selected image
will then appear in the Selected Images region (Figure 2.D) at the
bottom of the interface. To remove an image from the list of selected
images, the user can click on the checkbox once again, either on
the image in the image gallery or in the Selected Images region.

Similarly to [21], we mathematically formalize the current work-
ing gallery as a square region of a 2D plane P (Figure 4). We
uniquely define plane region P in a hyperspace with three vec-
tors c, u, v, where c is the center of the region of the plane, and u
and v are two orthogonal vectors with equal length on the plane
that both point from the center c. Note that the number of dimen-
sions of each vector c, u, v corresponds to the number of dimensions
of the vector of latent variables z that the GAN takes as input. We
then represent the images in the current working gallery as 25
equally-spaced data points on the plane region, denoted by a set of
vectors of latent variables 𝑍 = {z1, z2, ..., z25}, where each vector
of latent variables zi ∈ 𝑍 is an input to the GAN model with the
corresponding image as output.

Figure 4: Twenty five equally-spaced data points (denoted by
a set of vectors of latent variables 𝑍 = {z1, z2, ..., z25}) from a
square plane region P defined by three vectors c, u, v. Note
that c denotes the central image in the plane region.

To start, the interface generates an initial current working gallery
by sampling vectors c, u, and v from a normal distribution, where
we compute the projection of vectors u and v one onto the other
and then resize them to a fixed length. This results in a random
orientation of the plane. In our example, we empirically estimated
these initial parameters to be c ∼ N(0, 0.1), u ∼ N(0, 1), v ∼
N(0, 1), and we fix the length of vectors u and v to 15. We then
pick 25 equally spaced points on the plane segment corresponding
to 25 latent vectors zi ∈ 𝑍 (i.e., 25 different GAN-generated images
in the current working gallery).

Note that the current working gallery does not show only quality
images. Instead, it allows the user to explore the space of possible
GAN-generated images (both with high and poor quality), using
eight different tools in the tool palette (Figure 2.A): zoom in, zoom
out, zoom into region, pivot, snapshot, randomize, and undo and
redo. Additionally, the user can pan the images in the current work-
ing gallery using arrows on the sides of the current working gallery.
We describe each tool in detail below.

3.1.3 Zoom In and Zoom Out. To explore the search space around
a particular image of interest in the current working gallery, the
user can click on the Zoom in or Zoom out tools in the tool palette
and then click on the image. The resulting working gallery will
have the image that the user clicked on in the center and it will be
surrounded by images that are more similar to it than the images in
the current working gallery (Figures 5 and 6). The only difference
between Zoom in and Zoom out is that, in the case of Zoom in
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(Figure 5), the images in the four corners of the resulting working
gallery will be more similar to the center image than the four corner
images in resulting gallery after Zoom out (Figure 6). Note, however,
that Zoom out tool is not a simple "undo" of the Zoom in tool because
the user could use other tools after zooming into an image, or zoom
out of an image that the user has not previously zoomed into.

Figure 5: An example of zooming-in on the top-left image
in a current working gallery (left). The zoomed-in image is
in the center of the resulting working gallery (right) and is
surrounded by more similar images than before.

Figure 6: An example of zooming-out of the image at the
fourth row, second column in a current working gallery
(left). The zoomed-out image is in the center of the resulting
working gallery (right) and is surrounded by more diverse
images than before.

We implement the Zoom in and Zoom out tools based on an ex-
isting method [21], which enables the user to sequentially enhance
and select a single highest quality image from a sequence of image
galleries using Bayesian optimization [5]. Our insight is that we can
adopt their original method to find a set of similar GAN-generated
images that the user has current interest in exploring, even if the
image the user zooms into or out off is not the highest quality image
in the current working gallery.

Let the plane segment P correspond to the current working
gallery, and suppose the user clicks on an image (with a corre-
sponding vector of latent variables z∗ ∈ 𝑍 ) in the current gallery
with one of the Zoom in or Zoom out tools. Our goal is to construct
the resulting working gallery and its corresponding plane segment
P ′, which is determined by vectors c′, u′, v′, such that the resulting

plane segment P ′ contains images that are more "similar" to the
image the user clicked on than the images on the current working
gallery plane segment P.

To do so, on each click, we run a single iteration of Koyama
et al.’s [21] Bayesian optimization method on the vector of latent
variables z∗ to compute vectors c′, u′, v′. This results in the image
that the user clicked on as the central image in plane segment P ′

(i.e., c′ = z∗), and vectors u′ and v′ such that they increase the
expected improvement in similarity between the central image z∗
and the rest of the images on the new plane segment P ′ compared
to the original plane segment P. After we compute vectors c′, u′, v′,
we scale the area of the resulting plane region (i.e., the length of
vectors u′ and v′) by an empirically determined scaling factor 𝑘 . In
case of Zoom in we shorten the vectors so the area decreases; and
in case of Zoom out we lengthen the vectors, so the area increases.

Note that unlike in [21], we restart the iterations for subsequent
invocations of Zoom in or Zoom out tools, since the user interest
in a particular group of images can change. This in turn keeps our
computational complexity low and the diversity of images in the
resulting working galleries high. For specific details on how to
implement Koyama et al.’s [21] Bayesian optimization method, and
any related proofs, please see [12, 21, 22].

3.1.4 Zoom Into Region. Here, we describe the Zoom into region
tool separately from the Zoom in and Zoom out tools because of
their fundamental differences. When the user clicks on an image
in the current working gallery with the Zoom into region tool and
drags the cursor to another image it forms a region. When the
user clicks with the tool on the other image, the top-left image
and bottom-right image in the region will become the top-left and
bottom-right images in the resulting working gallery (Figure 7). If
the user clicks on the same image with the tool twice, it will result
in no changes in the current working gallery.

Figure 7: An example of zooming-into-region of the bottom-
left eight images in a current working gallery (left). The
top-left and the bottom-right images in the resulting work-
ing gallery (right) correspond to the images in top-left and
bottom-right corner of the region in the current working
gallery. Note that the resulting working gallery is a square
despite the zoom in region being a rectangle.

Mathematically, let the current working gallery be defined by a
plane region P, and let the vectors of latent variables corresponding
to the top-left and bottom-right images in the zoom in region be
zi and zj, respectively. To construct the resulting working gallery
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plane region P ′ by computing vectors c′, u′, v′ using the following
equations:

c′ =
zi + zj
2

(1)

u′ =
zi − zj

2
(2)

v′ =
∥u′∥

∥v1 − v2∥
(v1 − v2) (3)

where

v1 = zi − 2zj

v2 =
v1 · u′
u′ · u′ u

′

In Equation (3), v1 − v2 is the vector rejection of v1 from u′,
where v1 − v2 ensures that v′ is perpendicular to u′, while the

∥u′ ∥
∥v1−v2 ∥ term scales the vector so that ∥u′∥ = ∥v′∥. Our choice of
v1 ensures that v1 ∦ u′ (otherwise, v′ would become zero), while
v2 computes the vector projection of v1 from u′. Notice that the
resulting plane region is always square, even if the zoom-in-region
in the interface is rectangular (Figure 8). Also notice that, unlike
Zoom in and Zoom out tools, Zoom into region tool does not change
the orientation of the resulting plane region.

Figure 8: A square plane region P corresponding to the cur-
rent working gallery, zoom-in region P ′′, and the resulting
plane region P ′ defined by three vectors c′, u′, v′. Note that
the resulting region preserves square shape, despite rectan-
gular shape of the zoom-in region P ′′.

3.1.5 Pivot. Up until now, all tools focused on narrowing down to
a similar set of images. However, to increase diversity of images,
sometimes it may be beneficial to break away from similar images
to search in underexplored areas of image space. However, simply
restarting the exploration from a random working gallery is not
always desirable as it may prevent explorations near the current
search space region.

Thus, we added the Pivot tool to the tool palette. When the
user clicks on the Pivot tool, the resulting working gallery shows a
different set of images centered at the same image as the current
working gallery (Figure 9). Note that despite its user-friendly name

that describes the appearance of the effect in the resulting gallery,
mathematically, this tool actually shifts the resulting plane region.

Figure 9: An example of pivoting in a current working
gallery (left). Note that the resulting working gallery (right)
is still centered at the same image, and the rest of the images
"pivoted" around it.

As mentioned earlier, there are 25 images in the current working
gallery (each corresponding to a point on the 𝑍 = {z1, z2, ..., z25}
in the current plane region P). Each zi ∈ 𝑍 has a corresponding
vector of latent variables with 120 dimensions. Thus, fixing the
same subset of dimensions in all 25 latent vectors and changing the
values of the remaining dimensions results in new, shifted plane
region P ′.

3.1.6 Pan. There are four arrows surrounding the image gallery.
The user can click on them to pan or move the current visible area
of the gallery in the direction of the arrow (Figure 10). Note that the
current working gallery only shows a region of the current plane
2D, but the plane extends in all four directions. When the user clicks
on one of the four arrows surrounding the current working gallery,
the region of the plane moves by one row or column of images
(depending on the direction of the pan).

Figure 10: An example of panning the current working
gallery (left) to the left, with the resulting working gallery
(right) showing that the region of the working gallery
moved by one column of images to the left.

Here we explain our formalization of the Pan command on the
example of panning to the left (without loss of generality). Let the
images in the current working gallery as a set of vectors of latent
variables 𝑍 = {z1, z2, ..., z25} on the current plane region P defined
by vectors c, u, v, and the resulting gallery after panning, with the
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plane region P ′(c′, u′, v′). Then, we can define the following two
direction vectors:

a = z6 − z1 (4)

b = z2 − z1 (5)
Intuitively, vector a points from the top of the gallery to the

bottom of the gallery, and vector b points from gallery’s left to
gallery’s right. Now, we can compute for c′, u′, v′ as:

c′ = z12 (6)

u′ = 2(−a − b) (7)

v′ = 2(a − b) (8)
Similarly, it follows that we can panning in the other three direc-

tions using the same way to construct the resulting plane region of
the resulting working gallery.

3.1.7 User Control and Freedom: Gallery Snapshot, Randomize,
Undo and Redo. To support user control and freedom [24], we
provide tools to save an exploration point to restart at a later time
or to start over. Clicking on the Snapshot tool records the current
working gallery and allows the user to return to it at any point in
the exploration. The Randomize tool will simply generate a new
working gallery (Figure 11) using the same method we used to ini-
tialize the first working gallery in Section 3.1.2. Finally, we provide
the standard Undo tool, which will change the current working
gallery into its previous state; and Redo, which will repeat any
commands that the user undid in the previous step.

Figure 11: Performing randomize operation to the gallery.

3.2 Automatically Generated Image Galleries
The existing methods to generate diverse set of photo-realistic
images from GANs sample the latent variable z from a truncated
normal distribution, which is different from using a normal distri-
bution during model training phase. However, not all GANs are
amenable to such sampling using truncation, which also requires vi-
sual examination of images to find a reasonable, but still subjective
threshold of the truncated normal distribution for each model.

Our method aims to solve those challenges by sampling from
the posterior probability distribution of image parameters given a

sample of quality images and their corresponding latent variables
selected using our interactive interface. To sample images from the
posterior distribution, we use MCMC [2] as one of few computa-
tionally feasible, well-established, principled sampling methods.

3.2.1 Markov Chain Monte Carlo (MCMC). It is difficult to guar-
antee the quality and diversity of images generated from a narrow
prior probability distribution. Instead, having collected samples
of quality images using our interface, we can estimate a posterior
probability distribution of the latent variable z in a principled way
using a MCMC method [2].

We model the probability distribution of the latent variable z
in a mixture of two Gaussians: one component is to capture the
photo realistic aspect, and the other component is to support diver-
sity of images. We assign the following prior values for the model
parameters: the prior weights of two mixtures follow a Dirichlet
distribution with concentration parameters (1, 1); the prior means
of two mixtures both follow a normal distributionN(0, 1); the prior
standard deviations of two mixtures both follow an inverse gamma
distribution IG(1, 1). We formulated this using the Bayes’ theorem:

𝑃 (𝜃 |𝑍 ) = 𝑃 (𝑍 |𝜃 )𝑃 (𝜃 )
𝑃 (𝑍 ) (9)

where 𝑍 = {zi}𝑛𝑖=1 is a set of 𝑛 observations, and 𝜃 are model param-
eters. 𝑃 (𝜃 ) is the prior probability distribution of the parameters 𝜃 ,
𝑃 (𝑍 |𝜃 ) is the likelihood of the observed data 𝑍 , and 𝑃 (𝜃 |𝑍 ) is the
posterior distribution of 𝜃 given observations 𝑍 .

We have declared 𝑃 (𝜃 ), and we also have the close-form formula
for 𝑃 (𝑍 |𝜃 ) since we have chosen the probability distribution to
model z. Now the difficulty of deriving the posterior distribution
𝑃 (𝜃 |𝑍 ) is to compute 𝑃 (𝑍 ):

𝑃 (𝑍 ) =
∫
Θ
𝑃 (𝑍 |𝜃 )𝑃 (𝜃 )𝑑𝜃 =

∫
Θ
𝑃 (𝑍, 𝜃 )𝑑𝜃 (10)

It is difficult to derive a close-form solution for Equation (10),
so we use MCMC to estimate the posterior distribution 𝑃 (𝜃 |𝑍 ).
MCMC begins by randomly picking a parameter setting. The simu-
lation then samples more random points according to an algorithm
(e.g.Metropolis-Hastings, Gibbs, and NUTs) and adds them to the
sequence of parameter values with a given probability, to ensure it
visits the high posterior probability regions more often. This way,
the number of sampling points in each region is proportional to
𝑃 (𝜃 |𝑍 ). The final histogram of the sampled points gives a good
estimation of the posterior distribution.

Suppose 𝜃0 is the current parameters, and 𝜃 is the next proposed
parameters. If we take the ratio of the posterior of 𝜃 to the posterior
of 𝜃0, 𝑃 (𝑍 ) in the Bayes’ theorem can be canceled out:

𝛼 =
𝑃 (𝜃 |𝑍 )
𝑃 (𝜃0 |𝑍 )

=

𝑃 (𝑍 |𝜃 )𝑃 (𝜃 )
𝑃 (𝑍 )

𝑃 (𝑍 |𝜃0)𝑃 (𝜃0)
𝑃 (𝑍 )

=
𝑃 (𝑍 |𝜃 )𝑃 (𝜃 )
𝑃 (𝑍 |𝜃0)𝑃 (𝜃0)

(11)

In other words, we can compare the posterior of two parameter
settings relatively.With aMetropolis-Hastings sampler,𝛼 is referred
to as the acceptance rate. A uniform random number 𝑢 ∈ [0, 1] will
then be generated and compared with 𝛼 . If 𝑢 ≤ 𝛼 , the proposed
parameters 𝜃 will be accepted. If 𝑢 > 𝛼 , the proposed 𝜃 will be
rejected and the current parameters 𝜃0 kept for the next iteration.
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4 EXPERIMENTS
Here, we describe three experiments (each a separate crowdsourced
user study) that we conducted to evaluate our proposed method
for exploring and sampling quality images from a GAN. We im-
plemented a functional prototype of our interface for the purpose
of the user studies. In each of the three experiments, we used the
BigGAN model [6] as a test bed. Thus, in our user studies, image
quality refers to photo-realism since the goal of BigGAN model
[6] is to generate diverse photo-realistic images. We conducted all
three user studies on the Amazon Mechanical Turk (MTurk) [1] and
compensated the participants proportional to the minimumwage at
our location. Our user studies were deemed exempt (HUM00184499)
by our Institutional Review Board (IRB).

Our ultimate goal was to compare our automatically generated
galleries against the current, state-of-the-art qualitative GAN eval-
uation method [6] in our last user study. Although we built up to
this comparison through our three studies, we did not iterate on
our interface design between the three studies. In our first study
we investigated participant interaction with our interface and its
ability to support them in exploring and selecting a diverse set of
photo-realistic images from the BigGAN model [6]. In the second
study, we validated the output of our first study to account for limi-
tations of crowdsourced studies. In the third study, we compared
against a baseline from BigGAN evaluation [6], which used only
static randomly sampled image galleries to visually examine output
from a GAN.

4.1 User Study Software and Implementation
To be able to run our user studies, we required a highly functional
implementation of our proposed method. Here, we describe differ-
ent components we have implemented.

4.1.1 Generative Adversarial Network (GAN) Model. To illustrate
our method, we used the BigGANmodel [6] in our prototype imple-
mentation, which can generate photo-realistic images from 1,000
different categories. Thus, in this case, we judge quality of images
based on how photo-realistic they are. We used the publicly avail-
able Python implementation of the BigGAN model [7] trained on
ImageNet [11], a large scale image dataset, at 128𝑝𝑥 × 128𝑝𝑥 reso-
lutions, in which the vector of latent variable z has 120 dimensions.
We specifically selected this model because it attempts to push the
boundaries of capabilities of GANs. This means that the model
does not necessarily always generate photo-realistic images for all
categories, making it a perfect test bed for our experiments. Also,
it would be difficult to explore this large high-dimensional sample
space manually even for a single category.

We selected ten different BigGAN categories (Cardoon, Cup, Dip-
per, Dome, Headland, Indigo finch, Irish Setter, Monarch Butterfly,
Poncho, and Tusker). We selected these categories based on two
criteria: 1) they were used as exemplars to visually examine and
illustrate the capabilities of the BigGAN model [6] (e.g., Irish setter,
Monarch Butterfly), or 2) they showed exceptionally poor quality
in our initial visual examination of the model (e.g., Cup, Tusker).

4.1.2 Study Prototype Implementation. We implemented a fully
functional interactive prototype of our design (Figure 2) as a Python

Figure 12: Interface of our image gallery labeling tool. The
user can click on a top-left checkbox to indicate that an im-
age is photo-realistic, or on the top-right checkbox to indi-
cate the image is not photo-realistic.

Django Web application and used it in our first user study. The pub-
lic facing Web application communicated with a MySQL database
server, where we stored all our application and user data, over a
secure connection.

Note that Bayesian inference is computationally expensive on
very high dimensional spaces [21], such as the one we intended to
explore. Such poor performance could impact the interactivity of
our prototype. Therefore, we set the number of dimensions of the
vector that the tools in our interface can operate on at any given
time to 10. Although we randomly pick these 10 dimensions at our
prototype start time, the user can use the Pivot tool to pick another
10 dimensions the other tools will operate on.

4.1.3 Image Sampling Implementation. In our study, we imple-
mented the MCMC sampling in Python with PyMC3 [28]. We used
a mixture of two Gaussians: one to capture photo-realistic aspects
of sampled images, and the other to model diversity in sampled im-
age. We set the prior weights of two mixtures to follow a Dirichlet
distribution with concentration parameters (1, 1); the prior means
of two mixtures both follow a normal distributionN(0, 1); the prior
standard deviations of two mixtures both follow an inverse gamma
distribution IG(1, 1). We chose these priors to match the training
parameters of the BigGAN model [6]. In our implementation, we
use the No-U-Turn sampler (NUTs) [16], which is the default step
method used by PyMC3 [28]. When sampling each dimension of z,
we tune for 2,000 samples and then draw 4,000 posterior samples.
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4.1.4 Image Labeling Software. In addition to our interactive in-
terface, we also implemented a separate image gallery labeling
tool (Figure 12), which we used in the other two user studies. The
labeling tool was similar to the working gallery portion of our
interface (Figure 2.B), but without any of the tools. Instead, the
user could only select a checkbox to indicate that an image was
photo-realistic, or select another checkbox to indicate the image
was not photo-realistic. To quickly evaluate the galleries and to
minimize any delays, we pre-generated the galleries and stored
the sampled images in the database for quick retrieval. We then
randomly assigned the galleries to participants in our second two
studies based on the study protocol.

4.2 Interactive Model Exploration User Study
In this study, we evaluated the ability of our interface to support
exploration and selection of a diverse set of photo-realistic images
from the BigGAN model [6].

4.2.1 Task and Method. Participants joined our study by clicking
on an MTurk Human Intelligence Task (HIT) from a list of avail-
able HITs. The participants then had to view the description of our
task, and read and accept our study consent form. After consent-
ing, participants had to view an instruction video that described
our interface and illustrated how to use each of the tools, before
proceeding to the study task.

In the study task, we instructed the participants to explore the
working galleries for a specific image category using all available
tools, and select 10 photo-realistic images. We randomly assigned
participants to image categories. Participants could only submit
their HIT once they selected at least 10 images, but the interface
did not prevent them from selecting more images. We limited each
HIT to 20 minutes. Participants could come back and use the tool
to find images in other categories (i.e., complete more than one HIT
over multiple sessions).

In this study, we counted the number of times participants in-
teracted with different tools to investigate their interaction with
the tool and show what tools contributed to finding photo-realistic
images. We also counted the number of images participants selected
across galleries to show the effectiveness of our interface. We did
not discard any images that the participants selected. We differed
judgement about photo-realism of the selected images until our
next user study. Note that we did not ask participants to use an ex-
isting state-of-the-art, non-interactive, randomly generated image
galleries where they have no control over what images they are
looking at (such as in [6]), since such comparison is not necessary
to show that having an interactive tool (compared to no interactive
tool) is useful.

4.2.2 Participants. We recruited 367 participants. All participants
were located in the United States, and were ages 18 and above. Only
participants who had more than 100 HITs approved onMTurk (with
an approval rate greater than 95%) could take part in this study.
We compensated each participant $2.50 per HIT, which resulted on
average in $10/h.

4.2.3 Results. Over 956 individual sessions, participants panned
current working galleries 2,138 times, zoomed in, zoomed out, and
zoomed into region of working galleries 969, 107, and 210 times

Table 1: Number of collected images per Category

Category Number of Images

Cardoon 867
Cup 888
Dome 908
Dipper 1,018

Headland 962
Monarch Butterfly 1,069

Indigo Finch 1,061
Irish Setter 981
Poncho 1,067
Tusker 1,205
Total: 10,026

respectively. They pivoted their current working galleries 150 times
and started from a new random working gallery (i.e., randomized)
679 times. They took 200 snapshots and reverted to a previous snap-
shot 34 times, and used undo and redo 97 and 15 times respectively.
This suggests that the tools enabled participants to select images
beyond those present in the starting randomly generated working
gallery they first looked at (i.e., equivalent to random image gallery
exploration).

Participants selected 10,026 GAN-generated images using our
prototype. The number of collected images in each category ranged
from 867 for Cardoon to 1,205 for Tusker (Table 1). Our results
show that each participant was on average able to find about 27
photo-realistic images. This, together with fairly balanced number
of images across categories, suggests that the participants were
able to successfully use our interface to explore and select images
they thought were photo-realistic, the primary way to judge the
quality of images generated using the BigGAN model [6].

4.3 GAN-generated Image Quality Evaluation
In this study, we evaluated photo-realism of GAN-generated images
that participants selected in our first study. Due to large number
of images, it is impractical to begin visually examination of the
GANmodel at this stage. Instead, in this study we first crowdsource
labels to identify the best photo-realistic images that we collected
in the first study.

4.3.1 Task and Method. Participants joined our study by clicking
on an MTurk Human Intelligence Task (HIT) from a list of available
HITs. The participants then had to view the description of our
task, and read and accept our study consent form. After consenting,
participants proceeded to the study task.

In the study task, we instructed the participants to select only
photo-realistic images from an image gallery using our image la-
beling tool. Each image gallery contained 25 images from the same
image category. For each task, we randomly selected a category
and then randomly selected 25 images from that category from
10,026 images participants generated using our prototype in the
first study. We limited each HIT to 5 minutes. Participants were not
allowed to complete more than one HIT in this study.
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Figure 13: Ten different randomly selected image galleries containing top photo-realistic GAN-generated images that partici-
pants selected using our interactive prototype in the first study.

Table 2: Ratings of Photo-realistic Images per Category

Category Number of Raters Krippendorff’s alpha Images with 1 or more Photo-realistic Label

Cardoon 139 0.0677 82.93%
Cup 147 0.0917 74.44%
Dome 170 0.066 87.22%
Dipper 178 0.0997 83.40%

Headland 174 0.0588 91.06%
Monarch Butterfly 175 0.0426 84.75%

Indigo Finch 165 0.164 76.44%
Irish Setter 162 0.101 77.37%
Poncho 179 0.104 86.41%
Tusker 133 0.0754 59.75%

We then counted the number of images that participants labeled
as photo-realistic and calculated their agreement using the Krip-
pendorff’s Alpha Reliability Coefficient to measure the quality of
images across galleries. We did not discard any images that the
participants labeled. Instead, we used our labeling tool interface to
visually examine and qualitatively assess images that the partici-
pants marked as photo-realistic.

4.3.2 Participants. We recruited 1,622 participants in this study. All
participants were located in the United States, and were ages 18 and
above. Only participants who had more than 100 HITs approved on
MTurk (with an approval rate greater than 95%) could take part in
this study. We compensated each participant $0.25 per HIT, which
resulted on average in $7.50 per hour.

4.3.3 Results. Each of 10,026 images generated using our tool in
the first study had at least 2 labels. Out of the 10,026, 8,015 images
(79.94%) were rated as photo-realistic by at least one participant.
The percentage of images rated as photo-realistic by at least one par-
ticipant in each category ranged from 59.75% for Tusker to 91.06%

for Headland (Table 2). Though the Krippendorff’s Alpha in Table
2 indicates a lot of noise in agreement (e.g., the ratings could be
highly subjective, there could be presence of too lenient or too
harsh raters), we interpret the high percentage of images partici-
pants labeled as photo-realistic to suggest that our prototype could
support exploration and selection of quality images, despite the
limitations of the BigGAN model.

We then performed visual examination of images that more
than 75% of participants labeled as photo-realistic. Figure 13 shows
a selection of GAN-generated images that participants selected
using our interactive prototype in the first user study. We found
that the participants were able to identify a diverse set of photo-
realistic images that go beyond the homogeneous set of images
used in the original visual examination [6] of the BigGAN model.
However, we also identified what appears to be a systemic problem
with the BigGAN model: it fails to generate photo-realistic images
for categories where objects in images are asymmetric (e.g., Cup,
Tuskar). We further investigate this in our next study.
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Figure 14: Ten different image galleries containing images sampled from the BigGAN model using our sampling method.
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Figure 15: The number of unique photo-realistic images in
galleries sampled using our method and the 4 baselines.

4.4 Automatically Sampled Images Validation
Although our first two studies showed that our prototype can sup-
port exploration and selection of photo-realistic images from the
BigGAN model [6], such approach is not scalable, as the number of
photo-realistic images we can collect in this way is bounded by the
number of participants in our studies and the time it takes them to
select images. Thus, we evaluated the ability of our method to sam-
ple photo-realistic images from the BigGAN model and compared
it with the existing baseline sampling methods from [6].

4.4.1 Task and Method. Participants joined our study by clicking
on an MTurk Human Intelligence Task (HIT) from a list of available
HITs. The participants then had to view the description of our
task, and read and accept our study consent form. After consenting,
participants proceeded to the study task.

In the study task, we randomly assigned participants into one of
50 conditions where each condition was a combination of (Method ×
Category). Method included our sampling method, and 4 baselines.
In our sampling method (Section 4.1.3), we used parameters of
GAN-generated images from our first study that had 75% or more
participants in our second study agree that they are photo-realistic.
Each baseline sampled a vector of latent variables z from a truncated
normal distribution with mean 0 and standard deviation 1, but with
four different truncation levels as suggested in [6]: (2, 1, 0.5, 0.04).
Category included the ten BigGAN image categories.

We then instructed the participants to select photo-realistic im-
ages that occur only once in their assigned image gallery using
our image labeling tool, and to deselect all others. We asked them
this to evaluate if a Method can produce a variety of photo-realistic
images. We limited each HIT to 5 minutes. Participants were not
allowed to complete more than one HIT in this study.

We then counted the number of images that participants labeled
as non-repeating, photo-realistic images to measure the quality of
sampled galleries. We ran the Align Rank Transform (ART) [32] to
analyze the data. We used this statistical method because we had
more than one independent variable (Method × Category) and our
ordinal data was not normally distributed. We performed a pairwise
contract test as is customary with ART [32] to find the differences
between conditions in case of a main effect or interactions. Our goal
was to show the effect of Method on the number of diverse photo-
realistic images it produces, and not necessarily to show Method ×
Category interaction. Instead, our study design accounted for the
effect of different categories, and we reported it for transparency.

4.4.2 Participants. We recruited different 1,000 participants in this
study. All participants were located in the United States, and were
ages 18 and above. Only participants who had more than 250 HITs
approved on MTurk (with an approval rate greater than 95%) could
take part in this study. We compensated each participant $0.25 per
HIT, which resulted on average in $7.50 per hour.
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Figure 16: The number of unique photo-realistic images in galleries from 10 different categories sampled using our method
and the 4 baselines.

4.4.3 Results. The results of our statistical tests found significant
main effect ofMethod on the number of selected non-similar photo-
realistic images (𝑝 = 0.0006) (Figure 16), but could not find a signif-
icant effect of 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑝 = 0.08); the test also found significant
interaction between the two (𝑝 = 0.0138). Our contrast test found a
pairwise difference only between our method and truncation 0.04
(𝑝 = 0.0002), truncation 2 and truncation 0.04 (𝑝 = 0.0357), and
truncation 1 and truncation 0.04 (𝑝 = 0.0191). Not surprisingly, our
contrast test could not find pairwise interactions (Figure 15), likely
due to large number of pairwise comparisons compared to number
of participants in each condition. This shows that our principled
sampling method outperforms at least one of the arbitrary baseline
thresholds from [6].

We then performed visual examination of image galleries gen-
erated using our method and the four baselines. Figures 17 and 18
show example comparison of randomly selected image galleries
generated using our method and the four baselines for top-rated
and bottom-rated five categories respectively. In our visual examina-
tion, we found that our method consistently sampled more diverse
galleries of photo-realistic images compared to the baselines. We
also found that the photo-realism and diversity of images varied
across categories and baselines, which could have contributed to
wide distribution of image counts across baseline thresholds (Fig-
ure 15). This showed additional evidence in favor of our principled
sampling method for each image category compared to arbitrary
baseline thresholds.

5 DISCUSSION
We have shown that our method could support exploration and
sampling of diverse set of photo-realistic images from a GAN
model, even when the GAN model struggles with generating photo-
realistic images in majority of cases (such is the case with the
BigGAN model and its Tusker category). Our validation showed
not only that each participant in our first study could explore the
model enough to on average select 27 images, but also that those
images are likely to be highly photo-realistic for most categories.

The results of our studies showed that our principled image
sampling approach is better than a heuristic approach where it is
unclear what sampling threshold one should pick. Our results in

the third study showed evidence that our method outperformed
sampling from narrow probability distributions that favor photo-
realism over diversity. This is because a low scoring gallery can
have highly photo-realistic images, but all images might be too
similar. It also highlighted that the users may favor diverse galleries
over highly photo-realistic ones.

However, results from our user studies echo concerns from previ-
ous work [27, 34] that suggested that the user feedback (especially
from crowdsourced user studies) is often too noisy for accurate GAN
evaluation. In our studies, we have also identified participants that
consistently rated too many or too few images as photo-realistic,
even when their feedback was objectively too lenient or too harsh.
Although this strengthens the argument for better quantitative
GAN evaluation methods, the need for qualitative visual exami-
nation by humans remains indispensable, and better qualitative
assessment methods may be required.

Note that our goal was not to show that our method can always
sample photo-realistic images, but to show that it can help identify
both capabilities and limitations of a GAN model. For example,
visual examination of image galleries generated using our method
showed that BigGAN is better at some categories than others. This
is because BigGAN model is experimental and is pushing the limits
of how many categories a model can learn. Some of the categories
are inherently bad in BigGAN (especially ones with asymmetric
objects). However, participants in our first study were able to locate
reasonable examples using our prototype and our sampling method
was able to generate photo-realistic image galleries even for those
problem categories.

Visual examinations of images generated using our method and
comparison with the baselines showed that the existing visual
examination methods might have sampled images from too wide
or too narrow distributions, which does not necessarily accurately
reflect the capabilities of a GAN model. When the distribution is
too wide, the sampled images were not photo-realistic; when it
was too narrow, they all looked too similar and were not diverse.
However, there is no way to tell how to manually pick the best
baseline threshold for each image category. Instead, our method
automatically estimates the probability distribution from which it
samples highly diverse set of photo-realistic images, including from
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Figure 17: Example randomly selected image galleries generated using our method and the four baselines for five categories
with on average the most diverse set of photo-realistic images rated by participants in our third study.

regions of the search space where one would not expect them to be
(e.g., far from the mean of a vector of latent variables z). Thus, our
method provides a better insight into more regions of search space
to offer a more comprehensive qualitative evaluation of a GAN.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented an interactive method for exploring
and qualitatively validating a GAN. We presented an interface that
provides a number of new tools for interactive GAN exploration.
Our method offers a comprehensive exploration and qualitative
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Figure 18: Example randomly selected image galleries generated using our method and the four baselines for five categories
with on average the least diverse set of photo-realistic images rated by participants in our third study.

evaluation of a GAN through visual examination of its outputs.
Our work is also an early exploration of how to qualitatively and
quantitatively assess methods for interactive GAN exploration.

Our results encourage further exploration in this space. In par-
ticular, our work shows the value of tools that support exploration

of hard to get search spaces. Future work should therefore explore
other tools based on principled, mathematical methods to explore
GANs using the working image gallery paradigm. Also, in our work,
we have focused on individual categories of images in the BigGAN
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model as a preliminary investigation. However, models such as Big-
GAN enable creative generation of images from multiple categories
using the principle of Visual Indeterminacy [15]. Therefore, in the
future work, we plan to explore this aspect of the BigGAN model
in our interactive tool.

Finally, in this work we have explored only a single measure of
image quality: photo-realism. However, other GAN output quality
measures may be required for more advanced use case scenarios
(e.g., for model designers as an interactive diagnostics tool). Also, as
GANs become more common design and art support tools, future
workwill have to explore other measures of quality to inform design
of future creativity support tools.
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